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The theoretical relationship between the initial fracture toughness and unstable fracture
toughness in the double-K model was established based on fracture extreme theory. Using
this relationship, the initial fracture toughness and unstable fracture toughness can be ob-
tained from each other without experimental measurement. The values of unstable fracture
toughness of three-point bending concrete beams were calculated with the input of initial
fracture toughness. The calculation was simplified by using the weight function method.
The calculated results were compared with those obtained by the double-K method. It is
shown that the results obtained from these two methods show a good agreement. Unstable
fracture toughness is affected by tensile strength and specimen size whereas unaffected by
the ratio of initial crack length to depth. In addition, the softening function was found to
have a negligible influence on the calculated result by a theoretical relationship.
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1. Introduction

The application of linear elastic fracture mechanics (LEFM) to determine the fracture parameter
of concrete was first introduced by Kaplan (1961). Since then, extensive research has been
conducted to study the fracture process of quasi-brittle materials. The critical stress intensity
factor calculated by LEFM mainly depends on specimen size (Bažant and Planas, 1998). This
is due to the nonlinear fracture process zone at the crack tip, and indicates that LEFM is
not applicable to concrete. To solve this problem, several nonlinear fracture models have been
proposed to describe crack propagation in concrete, such as the fictitious crack model (Hillerborg
et al., 1976), crack band model (Bažant and Oh, 1983), two parameter model (Jenq and Shah,
1985), size effect model (Bažant, 1984), effective crack model (Swartz and Go, 1984; Refai and
Swartz, 1987; Karihaloo and Nallathambi, 1990), and double-K model (Xu and Reinhardt,
1999a).

The double-K model introduces initial fracture toughness KiniI and unstable fracture tough-
ness KunI to characterize three different stages: crack initiation, stable crack propagation, and
unstable fracture in concrete. The two fracture parameters can be obtained by performing diffe-
rent laboratory tests and can be applied to evaluate the safety of large-sized concrete structures,
such as dams and nuclear power stations. KiniI represents the capability of resisting crack initia-
tion. The value of KiniI can be calculated by initial cracking load P

ini and initial crack length a0
using the formula of LEFM (Tada et al., 2000). KunI represents the maximum resistance to
crack propagation, and its value can be calculated by inserting peak load Pmax and critical
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crack length ac into the same formula of LEFM. ac is calculated by an LEFM expression ba-
sed on the linear asymptotic superposition assumption containing critical crack mouth opening
displacement CMODc (Xu and Reinhardt, 1999b).
According to the double-K method, the relationship between KiniI and K

un
I is established

by the critical crack tip stress intensity factor due to the cohesive stress KCI , which is also called
the cohesive toughness; thus, the following expression (Xu and Reinhardt, 1999b) is given

KiniI = K
un
I −K

C
I (1.1)

Xu and Reinhardt (2000) adopted two empirical formulae to determine the values of ac and K
C
I ,

and thus simplify the calculation. In the simplified method, the special numerical technique to
calculate KCI in the analytical method (Xu and Reinhardt, 1999b) is not needed. Kumar and
Barai (2009) adopted the weight function method and provided a closed form expression for
calculating KCI . This method reduces the calculation complexity and provides accurate results.
On the basis of the weight function method, Ince (2012) applied the peak load method (Tang
et al., 1996) to determining the fracture parameters for the double-K fracture model by using
splitting test data for different specimen geometries. Kumar et al. (2014) proposed a method
taking peak load as a parameter to calculate the double-K fracture parameters. In this method,
the measurement of CMOD is not required; however, at least three different specimens are
suggested to be used for a better estimation. Recently, Qing et al. (2017) developed a simplified
extreme method using only experimental peak loads to obtain the double-K fracture parameters.
This method requires only one specimen to be tested and avoids the numerical integration.
Although the double-K fracture parameters can be obtained from the above-mentioned me-

thods, the theoretical relationship between the two parameters cannot be established due to
the requirement of the test. Three-point bending beam tests are difficult to be conducted if
the specimens are significantly large, and the influence of specimen weight cannot be ignored.
Without the test data, KunI can be obtained from K

ini
I by use of a few analytical methods (Qing

et al., 2014; Wu et al., 2015). For example, on the basis of fracture extreme theory (Qing and
Li, 2013), Qing et al. (2014) adopted the weight function method (Kumar and Barai, 2009) to
successfully predict KunI with the input of K

ini
I based on the initial fracture toughness criterion

(Dong et al., 2013). In this method, the values of the experimental peak loads and CMODc are
not required in the calculation due to the application of the extreme value theorem. Comparison
of peak loads of wedge splitting specimens validates this approach for predicting the unstable
fracture state of concrete. Analytical methods (Qing et al., 2014; Wu et al., 2015) can obtain
KunI from K

ini
I but do not illustrate the theoretical relationship between the double-K fractu-

re parameters. Moreover, numerical integration needs to be used in these methods due to the
singularity problem at the integral boundary.
The present study aims to establish the theoretical relationship between the double-K frac-

ture parameters based on the simplified extreme method. On the basis of this relationship, the
initial fracture toughness and unstable fracture toughness of three-point bending beams can
be obtained from each other without experimental measurement. The influences of the ratio of
initial crack length to depth, concrete strength grade, and specimen size on the ratio of unstable
fracture toughness to initial fracture toughness were studied.

2. Theoretical method

2.1. Fracture extreme theory

Figure 1 shows a typical P − a/D (P is the external load, a is the effective crack length,
and D is depth of the specimen) curve of concrete crack propagation. As can be seen, once the
external load reaches the initial cracking load P ini, crack begins to propagate. This condition
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leads to the extension of crack length. When P reaches the maximum value Pmax, a equals to
critical effective crack length ac. The partial derivative of P to a at this critical stage can be
expressed as

∂P

∂a

∣

∣

∣

∣

∣

a=ac

= 0 (2.1)

Fig. 1. Typical P − a/D curve (Qing and Li, 2013)

2.2. The relationship between double-K parameters

On the basis of the double-K method (Xu and Reinhardt, 1999b), the values of the initial
fracture toughness KiniI and unstable fracture toughness K

un
I for three-point bending beams

with S/D = 4 (S is the span of the specimen) are calculated as follows

KI =
3(2P +W )S

4BD2
√
ak(α) (2.2)

where B is width of the specimen, α = a/D, W is weight of the specimen and

k(α) =
1.99 − α(1− α)(2.15 − 3.93α + 2.7α2)

(1 + 2α)
√

(1− α)3

When (Pmax, ac) is introduced into Eq. (2.2), the following expression can be obtained

Pmax =
2BD2

3S
√
ack(αc)

KunI −
W

2
(2.3)

The crack propagation criterion (Dong et al., 2013) is expressed as

KiniI = K
P
I −K

σ
I (2.4)

where KPI is the stress intensity factor caused by the external load; K
σ
I is the crack tip stress

intensity factor due to the cohesive stress. Once the difference between KPI and K
σ
I equals to

KiniI , the crack begins to propagate.
In this study, numerical integration in the traditional analytical method was avoided by use

of the weight function (Kumar and Barai, 2010), which is written as KσI = (2/
√
2πa)g(a), to

calculate the value of KσI . In the said equation, g(a) is expressed in the four-term weight function
as

g(a) = σ(CTOD)a
(

2
√
s+M1s+

2

3
M2
√
s3 +M3s

2
)

+
ft − σ(CTOD)
a− a0

a2
{4

3

√
s3 +
M1
2
s2 +
4

1
5M2
√
s5 +
M3
6

[

1−
(a0
a

)3
− 3s
a0
a

]}

(2.5)
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where σ(CTOD) is the cohesive stress at the crack tip; CTOD is the crack tip opening displa-
cement, s = 1 − a0/a, M1, M2 and M3 can be represented as polynomial expressions of a/D
(Kumar and Barai, 2010). Here, the cohesive stress is assumed to be distributed linearly along
the cohesive zone. The cohesive stress at the initial crack and crack tip opening displacement
CTOD comply with the tensile softening curve, while the cohesive stress at the tip of the effective
crack is equal to the tensile strength.
According to Eq. (2.4), the expression of external load P can be derived as

P =
2BD2

3S
√
ak(α)

[ 2√
2πa
g(a) +KiniI

]

−
W

2
(2.6)

The derivative of P to a is obtained as follows

∂P

∂a
= ζ ′(a) + η′(a)KiniI (2.7)

where

ζ ′(a) =
4BD2

3
√
2πS

g′(a)k(α)a − g(a)[k′(α)a + k(α)]
k2(α)a2

η′(a) = −
2BD2

3S

[ 1√
a
k(α) +

√
ak′(α)

2ak2(α)

]

(2.8)

g′(a) and k′(α) are given in Appendix.
The following nonlinear softening function (Reinhardt et al., 1986) was used in the calculation

σ(CTOD) = ft
{[

1 +
(c1CTOD

w0

)3]

exp
(−c2CTOD

w0

)

−
CTOD

w0
(1 + c31) exp(−c2)

}

(2.9)

where ft is the tensile strength of concrete; c1, c2 and w0 are material parameters.
For three-point bending notched beams, the following form (Jenq and Shah, 1985) was used

to calculate CTOD

CTOD = CMOD

√

(

1−
a0
a

)2
+
(

−1.149
a

D
+ 1.081

)[a0
a
−
(a0
a

)2]

(2.10)

CMOD can be expressed by the formula of LEFM (Tada et al., 2000) for the three-point bending
beam with S/D = 4 as follows

CMOD =
6PSa

D2BE

[

0.76 − 2.28α + 3.87α2 − 2.04α3 +
0.66

(1− α)2
]

(2.11)

Substituting P = Pmax and a = ac into Eqs. (2.9) and (2.10) and combining Eq. (2.3) yields the
critical crack tip opening displacement CTODc expressed as follows

CTODc =

(

4
√
acK

un
I

Ek(αc)
−
3SacW

D2BE

)

[

0.76 − 2.28αc + 3.87α2c − 2.04α
3
c +

0.66

(1− αc)2
]

·

√

(

1−
a0
ac

)2
+
(

−1.149
ac
D
+ 1.081

)[a0
ac
−
(a0
ac

)2]
(2.12)

According to Eqs. (2.9) and (2.12), σ(CTODc) was rewritten as the function of K
un
I and ac

as follows

σ(CTOD c) = f1(K
un
I , ac) (2.13)
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When P reaches Pmax, and a = ac, substituting these into Eqs. (2.6) and (2.7) and combining
Eqs. (2.12) and (2.13), a nonlinear equation system can be acquired as follows

KunI = K
ini
I +

2
√
2πac
f1(K

un
I , ac)ac

(

2
√
sc +M1sc +

2

3
M2

√

s3c +M3s
2
c

)

+
ft − f1(KunI , ac)
ac − a0

a2c

{4

3

√

s3c +
M1
2
s2c +

4

15
M2

√

s5c +
M3
6

[

1−
(a0
ac

)3
− 3s
a0
ac

]}

4
√
2π
[g′(ac)k(αc)ac − g(ac)k′(αc)ac − g(ac)k(αc)]

−
[√
ack(αc) + 2

√

a3ck
′(αc)

]

KiniI = 0

(2.14)

The three unknowns in Eqs. (2.14) are ac, K
ini
I , and K

un
I . ac can be determined by solving

the two above-mentioned equations if any one of KiniI , and K
un
I is known. Thus, Eqs. (2.14)

provides an implicit expression of the theoretical relationship between KiniI and K
un
I . On the

basis of the closed form expression, the values of initial fracture toughness and unstable fracture
toughness can be obtained from each other without measurements of CMODc and Pmax. This
relationship indicates that the double-K fracture parameters are mutually dependent.

3. Validation and result

The derived theoretical relationship was validated by taking the initial fracture toughness as a
parameter to calculate the unstable fracture toughness. If the value of KiniI is given, Eqs. (2.14)
provides two equations with two unknowns of KunI and ac. By solving the nonlinear equations,
the values of KunI and ac can be obtained.

The data of two series of three-point bending notched beams with different ratios of initial
crack length to depth (Refai and Swartz, 1987) and different concrete strength grades (Dong et
al., 2016; Wang et al., 2016) were used for validation of the theoretical relationship.

Specimens with different ratios of initial crack length to depth were denoted as B-series as in
Refai and Swartz (1987). The dimensions for B-series specimens are 76mm×203mm×760mm
(BDS). The cylinder compressive strength fc of concrete is 53.1MPa, and Young’s modulus
of concrete E is 38.4GPa, the maximum aggregate size dmax = 19mm The initial fracture
toughness KiniI was calculated by the double-K method.

Specimens with different grades of concrete strength were denoted as TPB-series as in Dong
et al. (2016) and Wang et al. (2016). The dimensions for TPB-series are 60 mm×120 mm×480
mm (B ×D × S), and the ratios of initial crack length to depth a0/D are all 0.3. The tensile
strength ft was computed by using the relation ft = 0.4983

√
fc (ACI-318, 2002; Karihaloo

and Nallathambi, 1991). The initial cracking load was obtained by strain gauges, and then the
initial fracture toughness was calculated by the formula of LEFM (Tada et al., 2000). Detailed
parameters of the specimens are presented in Tables 1 and 2.

Kumar and Barai (2012) studied the size effect of concrete based on finite element method
(FEM). The results of three-point bending beams with different specimen sizes were used as
an example to validate the developed theoretical relationship. These specimens were denoted
as SE-series in this study. The width B of specimens is 100mm, and S/D = 4. The ratios
of initial crack length to depth for SE-series specimens are in the range of 0.2 to 0.5. The
concrete has mechanical properties as ft = 3.21MPa and E = 30GPa, and the fracture energy
GFC = 103N/m (Planas and Elices, 1990).

The material constants c1 = 3, c2 = 7, and w0 = 160µm (Reinhardt et al., 1986) were taken
into Eq. (2.9) to calculate KσI .
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Table 1. Parameters and comparison of the results of B-series specimens (fc = 53.1MPa, E = 38.4GPa, and dmax = 19mm)

Speci-
a0/D

KiniI
[MPa

√
m]

CMODc [µm] Pmax [kN] KunI [MPa
√
m]

men Test result (Refai Calculated Test result (Refai Calculated Double-K method Calculated
No. and Swartz, 1987) result and Swartz, 1987) result (Xu and Reinhardt, 1999b) result

B16 0.309 0.51 44 51.6 5.79 6.02 1.358 1.493

B4 0.319 0.507 43.4 52.2 5.612 5.837 1.33 1.482

B17 0.362 0.563 53.3 57.3 5.166 5.31 1.436 1.497

B15 0.376 0.622 43.1 58.5 5.033 5.273 1.264 1.51

B1 0.383 0.795 45.9 59.2 5.523 5.725 1.361 1.576

B3 0.442 0.709 51.1 63.4 4.365 4.503 1.308 1.48

B20 0.459 0.716 61.4 65.3 4.187 4.272 1.43 1.474

B18 0.478 0.766 65.5 67.2 4.053 4.128 1.468 1.478

B19 0.495 0.822 58 69.4 3.919 4.028 1.349 1.491

B5 0.588 0.883 89.5 77.6 3.207 3.31 1.634 1.478

B8 0.636 0.828 80 85.7 2.227 2.287 1.354 1.372

B7 0.648 0.992 89.4 90.4 2.249 2.416 1.457 1.448

B10 0.654 0.818 77.4 88 2.004 2.084 1.286 1.35

B9 0.706 0.843 92.8 94.1 1.537 1.615 1.346 1.407

Avg. – – 63.9 70 3.919 4.058 1.384 1.467

S.D. – – 18.6 14.6 1.455 1.502 0.095 0.058

C.V. – – 29.03% 20.84% 37.12% 37.03% 6.86% 3.93%

Table 2. Parameters and comparison of the results of TPB-series specimens

Specimen
No.

Concrete
fc
[MPa]

E
[GPa]

dmax
[mm]

KiniI
[MPa

√
m]

Pmax [kN] KunI [MPa
√
m]

strength Test results Calculated Double-K Method Calculated
grade (Wang et al., 2016) result (Dong et al., 2016) result

TPB20-0.3 C20 32.8 29.9 20 0.461 2.485 2.57 1.127 1.031

TPB40-0.3 C40 48.9 33.2 20 0.616 3.283 3.241 1.445 1.275

TPB60-0.3 C60 69.9 35.7 20 0.632 3.501 3.601 1.463 1.445

TPB80-0.3 C80 84.1 38.1 20 0.667 3.806 3.882 1.406 1.588

TPB100-0.3 C100 115.8 41.1 16 0.917 4.761 4.835 1.751 1.866
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3.1. Comparison of peak load

The calculated and tested peak loads for B-series (Refai and Swartz, 1987) and TPB-series
(Wang et al., 2016) are listed in Tables 1 and 2, respectively. The comparison of peak loads
is shown in Fig. 2. As can be seen, the calculated peak loads are slightly higher than the
tested ones for the B-series specimens (Refai and Swartz, 1987), while the differences are no
more than 5%. For the TPB-series specimens (Wang et al., 2016), the calculated results match
the tested results well. The good agreement indicates that unstable fracture toughness can be
obtained satisfactorily using the given theoretical relationship.

Fig. 2. Comparison of calculated and tested peak loads: (a) B-series, (b) TPB-series

Table 3 shows the comparison of Pmax obtained using the theoretical relationship with those
obtained by FEM. As shown in Table 3, there is not much difference (within the accuracy of 15%)
between the values of Pmax calculated by the theoretical relationship with those calculated
by FEM. This means that the method based on the theoretical relationship could produce a
reasonable result as the specimen size varies from 100mm to 400mm.

3.2. Unstable fracture toughness predicted using the theoretical relationship

Tables 1 and 2 show the calculated results of the unstable fracture toughness KunI , respecti-
vely. In these tables, the values of KunI in Xu and Reinhardt (1999b) and Dong et al. (2016) are
obtained by the double-K method. It can be seen that except for specimen “B15”, the values of
KunI obtained by using the theoretical relationship agree with the corresponding values obtained
by the double-K method within 15% accuracy. For specimen “B15”, the ratio of the value ofKunI
calculated by the theoretical relationship to that by the double-K method is 1.194. Since the
values of Pmax are similar in the two methods, the relatively lower value of K

un
I calculated by

the double-K method is attributed to the inaccuracy of the tested CMODc. Compared to the
double-K method, the method based on the theoretical relationship is more simple and easier
to operate.

Given that the results of KunI obtained by the theoretical relationship are in good agreement
with those by the double-K method, the results of the two methods were chosen for the sub-
sequent analysis. Figure 3a shows the variation of unstable fracture toughness with a0/D for
B-series specimens. It can be seen that the values of unstable fracture toughness vary slightly as
a0/D increases. Therefore, it can be concluded that a0/D has no significant influence on K

un
I .

This result is similar to the effect observed by Xu and Reinhardt (1999c).
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Table 3. Comparison of the results obtained by FEM and the theoretical relationship
(ft = 3.21MPa, E = 30GPa, and GFC = 103N/m)

Speci-
men
No.

D
[mm]

a0/D
KiniI
[MPa

√
m]

Pmax [kN] KunI [MPa
√
m]

FEM result Calculated Calculated Double-K method Calculated Calculated
(Kumar and result result (Kumar and result result
Barai, 2012) (nonlinear) (quasi-exponent.) Barai, 2012) (nonlinear) (quasi-exponent.)

SE2-1 100 0.2 0.553 5070.94 5669.85 5808.46 1.224 1.122 1.198

SE2-2 200 0.2 0.547 8502.8 9266.80 9555.46 1.328 1.353 1.395

SE2-3 300 0.2 0.532 11276.59 12392.34 12730.04 1.400 1.541 1.519

SE2-4 400 0.2 0.520 13608.21 15384.23 15627.64 1.419 1.766 1.649

SE3-1 100 0.3 0.572 3934.5 4391.15 4497.42 1.238 1.113 1.185

SE3-2 200 0.3 0.565 6571.4 7128.94 7339.38 1.316 1.331 1.370

SE3-3 300 0.3 0.554 8672.38 9544.79 9766.93 1.377 1.545 1.519

SE3-4 400 0.3 0.539 10405 11819.95 11945.31 1.420 1.763 1.609

SE4-1 100 0.4 0.576 2947.2 3280.91 3358.56 1.212 1.067 1.134

SE4-2 200 0.4 0.576 4909.7 5325.16 5473.15 1.299 1.299 1.335

SE4-3 300 0.4 0.566 6447.9 7116.82 7262.31 1.383 1.503 1.475

SE4-4 400 0.4 0.553 7683.4 8806.06 8873.98 1.416 1.677 1.561

SE5-1 100 0.5 0.575 2095.2 2352.11 2404.43 1.188 1.018 1.079

SE5-2 200 0.5 0.578 3477.2 3803.48 3903.89 1.281 1.232 1.265

SE5-3 300 0.5 0.572 4529.49 5078.35 5177.37 1.351 1.424 1.397

SE5-4 400 0.5 0.562 5335.2 6274.96 6323.69 1.370 1.585 1.507
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Fig. 3. Variation of unstable fracture toughness with a0/D (a) and with concrete strength grade (b)

Figure 3b shows the variation of KunI with the concrete strength grade for TPB-series spe-
cimens. It can be noticed that when the concrete strength grade is lower than approximately
C60, the values of KunI calculated by the double-K method are greater than those calculated by
the theoretical relationship. However, this tendency is opposite as the concrete strength grade
is over C60. In general, the values of KunI increase with the concrete strength. This result is
consistent with that found by Kumar and Barai (2009).
Figure 4 compares the values of KunI determined by the theoretical relationship with those

obtained by FEM (Kumar and Barai, 2012) for SE-series specimens with a0/D = 0.3. It can be
seen from Fig. 4 that the values of KunI obtained by the method based on theoretical relationship
are close to those obtained by FEM as the specimen size varies from 100mm to 400mm. The
unstable fracture toughness shows an increase trend as the specimen size increases. Table 3
indicates that for different values of a0/D, the variations of K

un
I with the specimen size are

similar. This means that KunI is not influenced by a0/D.

Fig. 4. Comparison of unstable fracture toughness obtained by the theoretical relationship with that
obtained by FEM for a specimen of a0/D = 0.3

4. Influence of softening functions

To study the effect of softening functions on the method based on the theoretical relationship, a
quasi-exponential softening function (Planas and Elices, 1990) was used to calculate the fracture
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toughness of specimens from Kumar and Barai (2012). The quasi-exponential softening function
is characterized by the following expression

σ(CTOD) =















ft
[

(1 + b1) exp
(−b2wft
GFC

)

− b1
]

for 0 < w ¬
5GFC
ft

0 for
5GFC
ft
¬ w

b1 = 0.0082896 b2 = 0.96020

(4.1)

where b1 and b2 are material constants.

The calculated results for the peak load and unstable fracture toughness using the quasi-
-exponential softening function are presented in Table 3. The values of unstable fracture tough-
ness using the quasi-exponential softening function for SE-series specimens with a0/D = 0.3
were added in Fig. 4. It is observed that the results obtained using the quasi-exponential softe-
ning function are very close (within the accuracy of 8%) to those obtained using the nonlinear
softening. Furthermore, all the calculated results show that the unstable fracture toughness in-
creases with the specimen size. It is evident that concrete shows higher resistance to unstable
fracture as the specimen becomes larger.

5. Conclusion

The theoretical relationship between the initial fracture toughness and unstable fracture tough-
ness was established. An implicit closed form expression of the relationship between the two
parameters was given. Based on the theoretical relationship, the double-K fracture parameters
can be obtained from each other without experimental measurement.

The developed theoretical relationship was validated by the method with the input of the
initial fracture toughness to calculate the unstable fracture toughness. Results show that the va-
lues of the unstable fracture toughness obtained by the theoretical relationship agree with those
obtained by the double-K method and the finite element method. The unstable fracture tough-
ness increases with the specimen size and concrete strength, whereas it shows no appreciable
difference when the ratio of initial crack length to depth varies.

The influence of softening functions on the method based on the theoretical relationship is
studied. Results show that the calculated values of the peak load and unstable fracture toughness
obtained by the nonlinear softening function and the quasi-exponential softening function are
close to each other.

A. Appendix

g′(a) and k′(α) in Eqs. (2.8) can be expressed as follows

k′(α) =
1

D(1 + 2α2)(1 − α)3
{

(−2.15 + 12.16α − 19.89α2 + 10.8α3)(1 + 2α)
√

(1− α)3

− (1.99 − 2.15α + 6.08α2 − 6.63α3 + 2.7α4)
[

2
√

(1− α)3 −
3

2
(1 + 2α)

√

(1− α)
]}

(A.1)
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g′(a) = (A1 +A
′
1a)
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√
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2

3
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√
s3 +
1
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M3s

2
)
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( 1
√
s
s′ +M1s

′ +M ′1s+M2
√
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2

3
M ′2
√
s3 +M3ss

′ +
1

2
M ′3s

)

+A2a
2
[

2
√
ss′ +M1ss

′ +
M ′1
2
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2

3
M2
√
s3s′ +

4

15
M ′2
√
s5

+
M3
2

(a30
a4
− s′
a0
a
+ s
a0
a2

)]

+A2a
2
{M ′3
6

[

1−
(a0
a

)3
− 3s
a0
a

]}

+ (2A2a+A
′
2a
2)
{4

3

√
s3 +
M1
2
s2 +

4

15
M2
√
s5 +
M3
6

[

1−
(a0
a′

)3
− 3s
a0
a

]}

(A.2)

where

s′ =
a0
a2

A′1 =
∂σ(CTOD)

∂a
=
∂σ(CTOD)

∂CTOD

∂CTOD

∂a

A′2 =
−σ′(CTOD)(a− a0)− [ft − σ(CTOD)]

(a− a0)2

(A.3)

for i = 1 and 3

M ′i =
1

√

(1− a/D)3
( bi
D
+ 2ci

a

D2
+ 3di

a2

D3
+ 4ei

a3

D4
+ 5fi

a4

D5

)

+
3

2D

1
√
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[
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a

D
+ ci
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D

)2
+ di

( a

D

)3
+ ei

( a

D

)4
+ fi

( a

D

)5]

M ′2 =
bi
D

(A.4)

According to Eq. (2.9)

∂σ(CTOD)

∂CTOD
= ft

{3c1
w0
exp

(

−
c2CTOD

w0

)[(c1CTOD

w0

)2

−
c2
w0

(

1 +
(c1CTOD

w0

)3)]

−
1

w0
(1 + c31) exp(−c2)

}

(A.5)

Substituting Eq. (2.10) to Eq. (2.9), the expression of ∂CTOD/∂a can be obtained

∂CTOD

∂a
=
6PS

BD2E

[

0.76 − 4.56α + 11.61α2 − 8.16α3 +
0.66

(1− α)2
+
1.32α

(1− α)3
]

·
{

s2 + (1.081 − 1.149α)
[a0
a
−
(a0
a

)2]}1/2

+
3PSa

BD2E

[

0.76 − 2.28α + 3.87α2 − 2.04α3 +
0.66

(1− α)2
]

·
{

s2 + (1.081 − 1.149α)
[a0
a
−
(a0
a

)2]}−1/2

·
{

2ss′ −
1.149

D

[a0
a
−
(a0
a

)2]

− (1.081 − 1.149α)
(a0
a2
− 2
a20
a3

)}

(A.6)
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